IMPROVING SOME ECONOMIC TRAITS OF CARAWAY (*Carum carvi,* L.) THROUGH MASS SELECTION EI-Labban, H.M.*;A.A.Gad**;F.A.Sadek*and Rasha S.F. EI-Serafy* * Horticulture Dept., Fac. Agriculture, Tanta University, Egypt.

** Horticulture Dept., Fac. Agriculture., Zagazig University, Egypt.

ABSTRACT

The present study was carried out at the Experimental Farm of the Faculty of Agriculture, Tanta University, during three successive winter seasons (2006/2007, 2007/2008 and 2008/2009). In order to improve caraway population in growth characters and fruit yield; two cycles of mass selection were done. The base population (C_0) from the local variety (Balady) seeds were sown on rows 75 cm apart and 50 cm between hills. At maturity stage, selection was done on the basis of high yielding 20% of the plants. Fruits of previous selected plants were bulked together and sown to raise the next generation (C_1). At the end of C_1 and C_2 the selection intensity was raised to about 40%. Each selected plant fruits were weighted and oil content was determined. The results of this study showed that mass selection led to increase homogeneity of plant height and number of branches / plant with reduces the variability.

Concerning fruit yield the results also, declared that the fruit yield/ plant was increased from C_0 to C_2 , although the decreased of volatile oil percentage from C_0 to C_2 , without significant differences between the three population.

In the future more than two cycles are needed for continuous improvement in yield/plant and the percentage of volatile oil.

Keywords: Caraway, *Carum carvi*, L., mass selections, breeding, vegetative growth, fruit characters and oil content.

INTRODUCTION

Caraway (*Carum carvi*, L.) plant is an annual herbaceous plant belongs to Family Apiaceae and widely distributed in countries bordering Europe, western Asia, and northern Africa. The caraway fruit is a schizocarp, which at harvest is separated into halves, which are called "seeds". (Harro *et al.*, 1998). Caraway seeds have an aromatic fresh taste and smell caused by an essential oil contained in ducts in the pericarp.

The economical importance of caraway plants is attributed to its seeds which contains about 3-5% volatile oil. The aroma of the oil is mostly dominated by carvone (50 to 60%) and limonene (20 to 30%), the principal content of oil in addition to trace amount of other constituents (carveol, dihydrocarveol, α - and β - pinene, sabinene and perillyl alcohol) are of much minor importance (Baysal and Starmans, 1999).

The oil has several uses for the flavouring of pharmaceutical products, such as tooth paste, and the oil is applied to treat flatulence, stomach disorders, antihistaminic to relieve gas and as antispasmodic.

The seeds use as a culinary in food industries (pickles and bread), Carvon from essential oil use as a sprout-inhibiting agent for potatoes and seed potatoes, Baysal and Starmans, 1999 and Oosterhaven *et al.*, 1995).

In the Mediterranean region, caraway varieties that seem to be originate from local populations or their origin is unknown, are called "Balady". These types became the source of varieties for selection of new types whereas this type as a cross pollinated species has a genetic heterozygosity. So, it is appeared suitable for improvement, through selecting better genotypes for agronomic and quality traits.

National Research Centre on Seed Spices (2007) has developed two annual types of caraway selections NRCSS-ACar-91 and ARCSS-ACar-94, both of these selections are being acclimatized for cultivation under semi-arid conditions. Petraityte *et al.* (2002) investigated the stability of some morph biochemical parameters of common caraway. They found that the most stable parameter was 1000-fruit weight. Kuz-mich (1986) mentioned that individual plant selection in a local population of *Carum carvi* from kiev (Ukraine), gave population exceeds the standard by 0.32 t/ha in seed yield.

Dusek (1992) illustrated that from 21 *Carum carvi* genotypes evaluated over 2 years, the seed yield was improved from 2.6 t/ /ha in 1988 to 4.6 t/ha in 1989. Kuź-mich (1986) mentioned that individual selection in a local population of *Carum carvi* from Kiev (Ukraine) exceeds the standard by 0.44% in essential oil content and by 20.3 kg/ha in essential oil yield.

In Egypt, medical and aromatic plants have a little improvement and breeding research. So, the main objective of this work was to evaluate some figures of caraway population as affected by mass selection.

MATERIALES AND METHODS

The present study was carried out at the Experimental Farm of the Faculty of Agriculture, Tanta University, during three successive winter seasons (2006/2007, 2007/2008 and 2008/2009). This study was initiated to improve caraway (*Carum carvi*, L.) population through using two cycles of mass selection.

The seeds were obtained from the Medical and Aromatic Plants Department, Horticulture Research Institute, Agriculture Research Center, Ministry of Agriculture, Egypt.

The base population (C_0)

The experimental soil was divided into rows 75cm apart. Seeds of caraway were sown on the 4th of November during 2006/2007 season in hills, 3-4 seeds per hill. The distance between hills was 50 cm. After the full germination (about 2 weeks), the seedlings were thinned to maintain one plant in each hill. Fertilizers were applied as recommended by Ministry of Agriculture, Egypt.

The recommended dose (RD) used of NPK chemical fertilizers was 400 kg/fed. Ammonium Sulphate (20.5%), calcium super phosphate 300 kg/fed. (15.5% P_2O_5) and 50 kg /fed. potassium Sulphate (48% K₂O). Ammonium Sulphate was added in two equal doses, the first one was added after month of sowing, then the second one was added after month of the first one, while calcium super phosphate and potassium sulphate were added during soil preparation. All other cultural practices were done whenever required.

At maturity stage, each plant on the 5th of May was individually harvested, and its weight was recorded after it has been air-dried. Twenty three individual plants were selected on the basis of their fruit yield / plant, when they ranged about (33.64 - 49.97g /plant) and oil contents were ranged about (1.30 - 3.50 %). An equal quantities of seeds from the selected plants (23 plant) were bulked together to raise the next generation.

The first cycle of mass selection (C₁)

The bulked fruits were sown on the 6th of November during 2007/2008 season and the same cultural practices were done as previously mentioned in C_0 population. Each plant on the 9th of May was individually harvested.

On the basis of fruit yield / plant and oil content, thirty eight individual plants yielded (21.98 - 59.92 g / plant) fruit yield, and (2.0 - 3.5 %) oil content were selected. Then equal quantities of the fruits from the selected plants were bulked to raise the next generation.

The second cycle of mass selection (C₂) The bulked fruits were sown on the 6th of November during 2008/2009 season. After harvest, each plant on the 11th of May was individually harvested. Thirty six individual plants were selected, these plants yielded (26.55 - 52.47 g / plant) and oil content (2.1 - 3.5 %).

Data recorded on individual plants in each generation:

1. Vegetative characteristics

1.1 Plant height (cm).

1.2 Branch number / plant.

- 2. Fruit Characteristics
- 2.1 100 fruits weight (g).
- 2.2 Fruit yield / plant (g).

3. Volatile Oil

3.1 Oil percentage %.

3.2 Oil yield / plant (ml).

Volatile oil determination

Ten grams of full mature dry caraway fruits were ground and inserted immediately to a quick fit distillation flask. The volatile oil percentages in fruits (10 g) obtained from each individual plant were determined by a water distillation method described in British Pharmacopea (1963), using the following equation:

Volatile oil percentage =	Oil volume in the graduated tube	_ ⊶ 100
	The weight of Air dried sample	× 100

Statistical analysis

Estimation of variability parameters, calculated from the component of variation for the studied fruit characters in various selected entries of caraway, was done according to Snedecor and Cochran (1980). Frequency distribution was performed for each trait and the following population parameters were calculated:

1. Arithmetic mean $(x_{\bar{o}})$: is the average mean of the trait under study.

El-Labban, H.M. et al.

- Range: The difference between the maximum and minimum values of the measured character.
- 3. Variance (S²): plant to plant variance was calculated by the formula for each breeding cycle:

$$S^{2} = \frac{\Sigma X^{2}}{n} - \frac{\Sigma (X)^{2}}{n}$$

4. Standard deviation (σ) = S

5. Coefficient of variation C.V =
$$\frac{\sigma}{X^{\circ}} \times 100$$

RESULTS AND DISCUSSION

Results of the present study, on caraway (*Carum carvi,* L.), for the base population and two cycles of mass selection will be discussed each trait of the study:

Plant height

Results in Table 1 show that the range obtained for base population (C₀; 75cm) was greater than that for first cycle (C₁; 66 cm) and second cycle (C₂; 50cm) of mass selection. The mean of the three populations, when each was compared with its standard deviation, were highly significant. However, C₀, C₁, and C₂ had insignificant difference among them (t-test); according to the population mean (x⁻).

Table (1): Variability of plant height (cm), no. of branches and weight of 100 fruit (g) in caraway (*Carum carvi,* L.) after two cycles of mass selection.

cycle Mass S.		plant height	No. of branches	Weight of 100 fruit	
C₀	Range	64-139	5-15	0.34-1.19	
	X-	107.12	9.03	0.76	
	S ²	169.45	5.45	0.03	
	S.d.	13.02	2.34	0.17	
	C.V %	12.15	25.85	22.79	
C1	Range	84-150	7-15	0.31-1.61	
	X-	112.34	10.31	0.88	
	S ²	208.69	2.01	0.03	
	S.d.	14.45	1.41	0.18	
	C.V %	12.85	13.75	19.68	
C2	Range	75-124	8-15	0.34-0.87	
	X-	101.82	11.55	0.57	
	S ²	129.30	2.74	0.01	
	S.d.	11.37	1.65	0.11	
	C.V %	11.16	14.33	17.54	
C_{1} - Base population C_{2} - The first cycle of mass selection and C_{2} - The second cycle of					

 \overline{C}_0 = Base population, C_1 = The first cycle of mass selection and C_2 = The second cycle of mass selection

Variances (S²) for the above mentioned populations were high for C_1 compared to C_0 and the lowest one was obtained by C_2 according to testing

the equality of two variances (F-test = the larger S^2 / the smaller S^2) C_1 had significant difference compared with C_0 and there were significant difference between C_0 and C_2 in this respect. The results also indicate that, variability of the population was mostly the same for C_0 (12.15) and C_1 (12.85) and the lowest value was for C_2 (11.16).

These results indicate that, the variability in plant height was reduced by two cycles of mass selection, since the range was reached about 49.0 cm; even it is a crude measure of variability. Moreover, such reduction in

population variability confirmed in C_2 by S^2 and C.V. %. Fortunately, the population mean in this cycle was not significantly reduced compared with C_0 and C_1 .

From the previous results it could be noticed that caraway population after two cycles of mass selection became more homogenious compared to C_0 population.

Number of branches /plant

Results in Table 1 indicate that the range obtained for C_2 was the lowest one (7.0), in comparison with C_0 (10.0) and C_1 (8.0) populations. The range of the populations became more homogenious after two cycles of mass selection. These results confirmed the other results obtained by Singh and Sastry (2003) and Tehlan *et al.* (2007).

The means of the three populations (Table 1) when each was compared with its standard deviation were highly significant. However, C_0 , C_1 and C_2 populations had insignificant difference among the mean values; however C_2 had highest number of branches (11.55) compared to C_1 (10.31) and C_0 (9.03). Concerning the performance of variance, C_1 was the lowest value followed by C_2 and the largest value was obtained by C_0 . The difference between the three populations were significant in this regard. The results of variance reflected higher significant difference for C_0 compared with C_1 and/also C_2 significantly higher than C_1 . These results were in agreement with Agnihotri *et al.* (1997). C.V.% values confirmed homogeneity of C_1 population where C_1 had the lowest value (13.75%) followed by C_2 (14.33) then C_0 (25.85) was the highest one.

Weight of 100 fruits

Results in Table 1 indicate that, C_1 had the greatest range (1.30g) followed by C_0 (0.85g), while C_2 gave the lowest range (0.53g).

The mean of each cycle of selection was highly significant when compared with its standard deviation. However, C_0 , C_1 and C_2 had no significant difference concerning to the population mean $(x_{\bar{o}})$. For the value of variance, C_2 gave the lowest value while the values of C_0 and C_1 were equal, also there was no significant difference between C_0 and C_1 , while, there was significant difference between C_2 compared with $C_{0 \text{ or }} C_1$.

That is mean that caraway population became more homogenious after two cycles of mass selection. C.V% values indicate that C_2 was more homogenious (17.54) compared with C_0 (22.79) and C_1 (19.68). **Fruit yield/plant (g)**

It is clear from the results of Table 2 that, C_0 gave the greatest range (39.06) followed by C_1 , while C_2 gave the lowest range (26.99), indicating homogeneity in caraway yield/plant after two cycles of mass selection.

There were significant differences among the three populations when the mean of each cycle of selection was compared to its standard deviation. However, there was no significant difference among mean values of the three populations. Variance, on the other side, was highly reduced by each cycle of mass selection, since C_0 had (105.79), C_1 had (61.61) and C_2 had (43.16). By testing equality of two variances (F- test = the larger S^2 / the smaller S^2), results reflected highly significant difference for C₀ compared with C₁and C₂, and C₂ was significantly lower than C₀, and C₁. Similar trend was obtained by Agnihotri et al. (1997).

The values of C.V. % clearly indicated that, the variability in each population was reduced from C_0 (33.76%) to C_1 (25.02%) and C_2 (19.09).

Oil percentage (%)

The greatest range was obtained by C_0 followed by C_1 and finally C_2 . These ranges were (2.2%), (1.5%) and (1.4%), respectively, (Table 2). The mean performance compared with standard deviation was highly significant for C₀, C₁ and C₂ populations. On the other hand, there was no significant difference among mean values of the three populations. These results are in agreement with Kulkarni (1991) who found that an increase was happened in herb yield of davana through selection without affecting oil percentage.

The statistical analysis of results using F-test, clearly show that there were significant differences among the three populations in this regard. These results supported the other results of Koutsos et al. (2009). C.V. % performance revealed that greatest value of C.V. % was obtained by C₁

(21.20 %) followed by C_0 (17.69 %) while the lowest one was recorded by C_2 (15.74 %). This means that variation within population was reduced in this respect from C_1 to C_2 population.

Table (2):	Variability of fruit yield/plant (g), oil percentage (%) and oil
	yield/plant (ml) in caraway (Carum carvi, L.) after two cycles
	of mass selection.

cycle Mass S.		Fruit yield/plant (g)	Oil percentage (%)	Oil yield/plant (ml)
Co	Range	10.91-49.97	1.3-3.5	0.44-1.75
	X-	30.47	2.99	1.27
	S ²	105.79	0.28	0.09
	S.d.	10.29	0.52	0.31
	C.V %	33.76	17.69	23.62
C ₁	Range	20.50-50.92	2.0-3.5	0.46-1.58
	X-	31.37	2.71	0.91
	S ²	61.61	0.33	0.07
	S.d.	7.85	0.58	0.26
	C.V %	25.02	21.2	29.07
C ₂	Range	25.48-52.47	2.1-3.5	0.56-1.52
	X-	34.41	2.46	0.90
	S ²	43.16	0.15	0.05
	S.d.	6.57	0.38	0.22
	C.V %	19.09	15.74	24.85

C0 = Base population, C1 = The first cycle of mass selection and C2 = The second cycle of mass selection

6. Oil yield /plant

Results in Table 2 show that the range was gradually reduced with advancing of selection cycles. The range values were 1.31, 1.12 and 0.96 for C_0 , C_1 and C_2 , respectively. The mean values compared with standard deviation revealed highly significant difference among C_0 , C_1 and C_2 . Concerning the variance performance, the results indicate that a higher improvement was occurred since the values reduced in each cycle to reach in final cycle of selection to (0.05). A significant difference was recorded between the three seasons. A reduction of C.V.% values was obtained through the three cycles of mass selection of caraway plant since the lowest values in this respect was recorded by C_2 population (Table 2).

From the previous result it could be noticed that the populations became homogenious. However, the oil yield of caraway fruits was not increased after two cycle of mass selection. Similar results were obtained by Kulkarni (1991).

The populations become homogenious but no increasing happened for oil yield after two cycle of mass selection this was agreement with Kulkarni (1991).

From the pervious mentioned results it could be noticed that there was simple increase in fruit yield of caraway through two cycles of mass selection. However, the volatile oil content in the selected plants was affected as a result of using mass selection.

As a conclusion applying two cycles of mass selection on caraway population led to reduce its variability and increase the homogeneity. Therefore, the mass selection method was recommended in order to improve caraway population and increase its homogeneity. In the future more than two cycles are needed for continuous improvement in yield/plant and the percentage of volatile oil.

REFERENCES

- Agnihotri, P., S. Dashora and R. Sharma (1997). Improvement of some economical characters of fennel (*Foeniculum vulgare*). J. of Spices and Aromatic Crops 6(1):51-54.
- Baysal, T. and D. A. J. Starmans (1999). Supercritical carbon dioxide extraction of carvone and limonene from caraway seed. J. of Supercritical Fluids, 14: 225-234.
- British Pharmacopea, (1963). Determination of Volatile Oil in Drugs. Phramaceutical Press, London . W.C.I.
- Dusek, K. (1992). Comparison of various genotypes in Czechoslovakia. Zahradnictvi, 19 (2):151-160.
- Harro, J., B.G. Jonathan, C.J.M. Maurice and C. Rodney (1998). Biosynthesis of the Monoterpenes Limonene and Carvone in the fruit of Caraway. Plant Physiol., 117:901-912.
- Koutsos, T.V., P. S. Chatzopoulou and S.T. Katsiotis (2009). Effects of individual selection on agronomical and morphological traits and essential oil of a "Greek basil" population. Euphytica, 170(3):365-370.

- Kulkarni, R.N. (1991). Three cycles of honeycomb selection for herb yield in davana (*Artemisia pallens*, Wall.). Euphytica 52: 99-102.
- Kuź-mich, N.K. (1986). New Caraway variety Podolśii9. Trudy Vsesoyuznogo Nauchno Issledovatel Skogo Inslituta Efiromaslichnykn Kul tar: 29-33.
- National Research Centre on Seed Spices (2007). Vision-2025 National Research Centre on Seed Spices, Perspective Plan, Indian Council of Agricultural Research. pp 9-11.
- Oosterhaven, K., K. J. Hartmans and J.J.C. Scheffer (1995). Inhibition of potato sprout by carvone enantiomers and their bioconversion in sprouts. Potato Res., 38 (2): 219-230.
- Petraityte, N., A. Dastikaite and A. Sliesaravicius (2002). Investigation of common caraway *Carum carvi*, L. morphobiochemical properties stability in situ. Zemdirbyste, Mokslo, Darbai, 78: 274-282.
- Singh, V. V. and E.V.D. Sastry (2003). Mass, full and half sib-selection for genetic improvement in fennel (*Foeniculum vulgare Mill.*). J. of Spices and Aromatic Crops. 12(2): 179-182.
- Snedecor, G.W. and W.G. Cochran (1980). Statistical Method 7 th Ed., lowe state. Univ. Press, Ames lowe, USA.
- Tehlan, S.K., K.K. Thakral, P.S. Partap and T.P. Malik (2007). Hisar Surbhi: A high yielding variety of coriander. Haryana J. Hortic.Sci. 36(3&4):410-411.

تحسين بعض الصفات الاقتصادية للكراوية من خلال الانتخاب الإجمالي حسنى محمد اللبان*، عبد المنعم عامر جاد**، فهمي عبد الرحمن صادق* و رشا سليم فرحات الصيرفي* * قسم البساتين، كلية الزراعة، جامعة الزقازيق، مصر.

أجريت تلك الدراسة بمزرعة كلية الزراعة جامعة طنطا خلال ثلاثة مواسم (٢٠٠٧/٢٠٠٦، المريت تلك الدراسة بمزرعة كلية الزراعة جامعة طنطا خلال ثلاثة مواسم (٢٠٠٧/٢٠٠٣، الانتخاب الإجمالي. زرعت بذور الصنف البلدى على خطوط المسافة بينها ٧٥ سم والمسافة بين الجور ٥٠ سم . عند الحصاد تم جمع بذور كل نبات على حده وأنتخب منها أفضل ٢٠% من النباتات على أساس أفضل محصول للبذرة والزيت ثم خلطت البذور المنتخبة لزراعتها في الموسم التالي، وأجرى ذلك الانتخاب لدورتين زادت فيهما درجة الإنتخاب الى ٤٠% من النباتات المنزرعة.

أوضحت النتائج أن الإنتخاب الإجمالي أدى الى زيادة التجانس في ارتفاع النبات وعدد الأفرع / نبات ، كما أظهرت النتائج زيادة في محصول الثمار / نبات من عشيرة الأساس الى الدورة الثانية من الإنتخاب. وانخفضت النسبة المئوية للزيت الطيار من دورة الأساس الى الدورة الثانية من الإنتخاب الا أن هذا الإنخفاض كان غير معنوياً.

وعموماً فإنه يمكن إجراء أكثر من دورتي انتخاب لإستمرار التحسين في محصول النبات الفردى ونسبة الزيت الطيار لنبات الكراوية.

قام بتحكيم البحث

اً.د / حکمت یحی مسعود

أ.د / حسين عبد الحق بصيله

كلية الزراعة – جامعة المنصورة كلية الزراعة – جامعة الازهر